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ABSTRACT: Annulated rosarins, β,β′-bridged hexaphyr-
in(1.0.1.0.1.0) derivatives 1−3, are formally 24 π-electron
antiaromatic species. At low temperature, rosarins 2 and 3
are readily triprotonated in the presence of trifluoroacetic
acid in dichloromethane to produce ground state triplet
diradicals, as inferred from electron paramagnetic reso-
nance (EPR) spectral studies. From an analysis of the fine
structure in the EPR spectrum of triprotonated rosarin
H33

3+, a distance of 3.6 Å between the two unpaired
electrons was estimated. The temperature dependence of
the singlet−triplet equilibrium was determined by means
of an EPR titration. Support for these experimental
findings came from calculations carried out at the
(U)B3LYP/6-31G* level, which served to predict a very
low-lying triplet state for the triprotonated form of a
simplified model system 1.

Expanded porphyrins are a set of heteroannulenes with π-
electron peripheries that are more extensive than their

better studied tetrapyrrolic porphyrin congeners.1 Expanded
porphyrins with [4n]annulene character are of particular interest
in that they allow predictions about antiaromaticity to be tested
experimentally within the context of systems with large π-
electron frameworks.
One such prediction is that, although annulated rosarin model

1 is a closed shell species, triprotonation of 1, should stabilize the
lowest triplet state and quite possibly make it the ground state of
H31

3+ (Scheme 1).2 This prediction comes from the results of
(U)B3LYP/6-31G* calculations (Figure S1 and Tables S1 and
S2 in the Supporting Information, SI). These calculations reveal
that in 1 the triplet is 13.4 kcal mol−1 higher in energy than the
lowest closed-shell singlet state at C3h geometries. However, in
H31

3+ the triplet is calculated to be only 1.0 kcal mol−1 higher
than the lowest closed-shell singlet state at D3h geometries and
just 0.5 kcal mol−1 higher at the lower energy C2 geometries.

The reason why the calculations predict a very low-lying triplet
state inH31

3+ can be readily understood, based on the depictions,
shown in Figure 1, of the two πmolecular orbitals (MOs) that are
singly occupied in the triplet state. The a2″ π MO of H31

3+ is
closely related to the lowest unoccupied (LU)MO of singlet 1.
Both of these MOs have density at all six nitrogen atoms. In
contrast, the a1″ MO of H31

3+ and the highest occupied
(HO)MO of singlet 1 both have nodes at the nitrogen atoms.
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Scheme 1. Structure of Model System 1 and Schematic
Representations of Limiting Singlet and Triplet Forms of Its
Triprotonated Derivative

Figure 1.MOs a1″ and a2″ ofD3h symmetry, which are singly occupied in
the lowest energy triplet state of H31

3+.
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Adding protons to the unprotonated nitrogens of 1 has the
effect of increasing the electronegativity of these nitrogen atoms,
thus stabilizing the a2″MO, relative to the a1″MO, inH31

3+. For
example, based on the calculated ionization energies (IEs) in the
triplet state of 1, the a2″-like MO is found to be higher in energy
than the a1″-like MO by 12.8 kcal mol−1 in 1. However, based on
the calculated IEs in the triplet state of H31

3+, triple protonation
of 1 is predicted to result in the a2″MObeing only 2.1 kcal mol−1

higher in energy than the a1″ MO in H31
3+.3

Inspection of Figure 1 also shows that the a1″ and a2″MOs of
H31

3+ have atoms in common. These MOs are nondisjoint;4

thus, if they were also exactly degenerate in energy, Hund’s rule
would apply.5 The ground state should then be the triplet.
Consequently, the prediction, based on the UB3LYP total
energies, that the triplet should either be the ground state of
H31

3+ or very close to it seems qualitatively reasonable.6

Herein, we report the results of experiments on annulated
rosarin 2,7 the tris-perfluorophenyl derivative of 1. Triprotona-
tion of 2 to form H32

3+ results in a change in the spin of the
ground state and the nearly quantitative formation of a triplet
diradical, as evidenced by the low temperature electron
paramagnetic resonance (EPR) spectrum of H32

3+.8−10 We
also carried out experiments on a new β,β′-vinylene-bridged
rosarin (3). The synthesis and characterization of 3 is provided in
the SI.
When HCl was used to protonate 2, reduction of trication

H32
3+ by Cl− occurred spontaneously to produce the one-

electron reduced speciesH32
2+•.7 The resulting radical gives rise

to a characteristic EPR spectrum with a g value of 2.003 at 77 K.
This spectrum proved largely invariant over the range from 77 K
to room temperature.
The structure of the presumed intermediate, H32

3+, could not
be characterized in detail, due to the technical difficulties
associated with preparing this species in solution. In fact, in initial
studies, it proved difficult to protonate fully the inner nitrogen
atoms of the structurally restricted rosarin 2 with organic acids,
presumably as the result of crowding within the cavity of the
trication. Therefore, we have explored trifluoroacetic acid (TFA),
as a strong, redox-resistant acid that might aid in the stabilization
of the hitherto poorly characterized tricationic species,H32

3+. As
can be seen from an inspection of Figure 2, addition of up to 1000
mol equiv of TFA to rosarin 2 gives rise to clear spectral shifts in
the UV−vis spectrum,11 which are clearly different from those
obtained using HCl (Figures S4−5 in the SI).
The EPR spectrum of 2 recorded in the presence of three equiv

of TFA in CH2Cl2 at extremely low temperature revealed
features ascribable to the formation of a triplet diradical (Figure
S6 in the SI). However, the resolution in the spectrum was less
than desired, possibly reflecting the relatively long distance
between the two electrons and their spins in the π-extended
rosarin platform that comprises 2 (vide inf ra). In contrast, and as

shown in Figure 3a and Figure S7, at 4 K the triply protonated
form of the derivative, H33

3+ gives rise to a characteristic triplet

EPR spectrum with features that are ascribable to zero-field
splitting. The EPR parameters ofH33

3+ were determined to be g
= 2.003, D = 577 G, and E = 63 G. The EPR signal intensity
increased with increasing concentration of TFA up to three
equivalents, to reach a constant value as shown in Figure 3b. This
is taken as evidence that rosarin 3 accepts up to three protons to
produce H33

3+, just as is observed in the case of the original
phenylene-bridged system 2 (Figure S8 in SI).
The amount of spin was calculated by comparing the double

integration of the EPR signal of the diradical species derived from
3 on full protonation with that of a known amount of a reference
stable radical, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) as
shown in Figure S9 in SI. Normalized for concentration, the
signal intensity ofH33

3+ was approximately 180% that of DPPH•

at 4 K. On this basis, we conclude that approximately 90% of
H33

3+ exists as a ground state triplet (diradical) at 4 K.12 From
the zero-field splitting value (D = 577 G) shown in Figure 3a, the

Figure 2. Absorption spectral changes observed upon the addition of
TFA (up to 1.0 × 10−2 M) to 2 (1.0 × 10−5 M) in CH2Cl2 at 25 °C.

Figure 3. (a) EPR spectrum of a CH2Cl2 solution of 3 (1.0 × 10−4 M) in
the presence of TFA (3.0 × 10−4 M) measured at 4 K. (b) Plot of EPR
intensity of a CH2Cl2 solution of 3 in the presence of TFAmeasured at 4
K vs concentration of TFA.
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distance r between the two electron spins inH33
3+ was estimated

to be 3.6 Å using the relation, D = 27800/r3.13 The r value is
consistent with the resonance structures of the triplet state of
H31

3+ shown in Figure 4 being significant contributors. However,
it is to be appreciated that other limiting structures may also
contribute to the overall depiction of H33

3+ in its triplet state.

From the triplet yield (90%) of H33
3+ at 4 K, the equilibrium

constant (K) for the conversion from the singlet to triplet was
determined to be 9, as calculated using the following equation:

⇌+ + •H 3 H 3[ ]
K

3 3
3

singlet

3 2

triplet

The triplet yield decreased with increasing temperature as shown
in Figure 5. From the temperature dependence ofK derived from

the data (Figure S10 in SI), the ΔH and ΔS values were
determined to be approximately 0.02 kcal mol−1 and 0.2 cal
mol−1 K−1, respectively. While the number of data points
available for the derivation of these values was limited, the fact
that the calculated ΔH and ΔS values were so low is fully
consistent with the energy gap between the singlet and triplet
states being very small. At 298 K, the triplet yield of H33

3+

produced by the reaction of 3 with three equiv of TFA is
estimated to be 50%. Based on the above findings, we conclude
that triprotonation of 3 produces a 4n π-electron species with a
small energy gap associated with conversion from the singlet to
triplet diradical state. Therefore, the triplet diradical electronic
structure was expected to dominate under conditions of enforced
full protonation. Such a finding is fully consistent with the
theoretical calculations discussed above.

The reversibility of the protonation−deprotonation process
was examined in the case of 2. The addition of excess
triethylamine (TEA) to a dichloromethane solution of trication
H32

3+ gave rise to the original closed shell form of 2, as inferred
from a UV−vis spectral analysis (Figure S12).
In conclusion, the annulated rosarins 2 and 3 are triprotonated

upon exposure to three or more equivalents of strong protic acids
to produce H32

3+ and H33
3+, respectively. The triprotonated

rosarins are found to exist primarily as triplet diradical species at 4
K. The energy difference between the singlet and triplet state is
very small (0.02 kcal mol−1). To the best of our knowledge, this is
the first time the acid-induced formation of triplet diradical
species has been reported. The present systems also represent a
rare example of an antiaromatic species whose electronic
configuration may be readily modified by application of an
external chemical stimulus. The present work thus highlights a
new approach to controlling the fundamental properties of
highly conjugated systems.
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